
3rd NASA Symposium on VLSI Design 1991

13 377
12.2.1

Pulse Mode VLSI Asynchronous Circuits

Q. Chen and G. Makl

NASA Space Engineering Research Center

for VLSI System Design

College of Enginering

University of Idaho

Moscow, Idaho 83843

Abstract - A new basic VLSI circuit element is presented that can be used

to realize pulse mode asynchronous sequential circuits. A synthesis procedure

is developed along with an unconventional state assignment procedure. Level

input asynchronous sequential circuits can be realized by converting a regular

flow table into a differential mode flow table, thereby allowing the new syn-

thesis technique to be general. The new circuits tolerate 1-1 crossovers. This

circuit also provides a means for state sequence detection and real time fault

detection.

1 Introduction

Many asynchronous sequential circuits can be modeled as a pulse mode circuit since the

inputs are presented in the form of pulses [1]. Level input sequential circuits can be

modeled as a pulse mode circuit by detecting input state changes [2]. This work presents

a basic circuit that can used to realize state variables that are effcctive in the realization

of pulse mode circuits.

Sequential circuits are normally defined in terms of flow tables, such as shown in Table

1. The inputs are shown across the top and the states along the side. The states are

encoded with internal state variables yl. Next state variables Y/ identify the next state

that the circuit will assume.

This paper presents a VLSI circuit element that allows for efficient realizations of pulse

mode asynchronous sequential circuits. The network consists of pass transistor next state

forming logic with a unique buffer.

The paper describes the following:

• Synthesis procedures for pulse mode asynchronous sequential circuits.

• State assignment procedure for differential mode asynchronous sequential circuits.

• Tolerance of 1-1 input crossover situations. (This circuit is designed to tolerate 0-0

input crossover situations also.)

• State sequence detection.

• Real time fault detection.



12.2.2

2 Pulse Mode Circuits

The next state equations can be expressed as follows[3]:

= f l_rl (1)

where Y/is next state variable,/v is the input state and fly is a sum-of-products expression

of state variables. It has been shown that the next state equations can be expressed as a

pass logic expression[3]:

Y, = xl(f,1) + . . + _r,,(f,,,) (2)

where Iv(fly) means input I v passes function f_v ........

The basic circuit to implement pulse mode circuits is shown in Fig. 1. Each state

variable is realized with this circuit. If there are m state variables, then there would be m

such circuits except that there is only one NOR gate.

T

t.__A

Figure 1: Next State Circuit Module

In pulse mode operation, all I v could be 0. When all input states I v are 0, the pass

networks fly are disabled and hence are tristated fromthe inverter input of the firststage.

The feedback inverter in the first stage is provided to sustMn the value at poin.t A of the

first stage. However, the feedback inverter consists of weak devices that can be overdriven

by the Iv(f_v) networks. The same kind of inverter is placed in the second stage of the
circuit a_ter- transistor T.

For pulse mode operation, assume one and only one input state I v is 1 at a time or

all Iv are 0. In other words, only one input pulse is present at a time. When I v = 1,

pass network f_v presents the proper next state value to Yi as specified in Eq. 2 for Y_ to

the input of the inverter at point A. The feedback inverter is composed of weak pullup

and pulldown transistors such that they can be overdriven by the value passed by Iv(f_v).

Therefore the correct next state value as defined by Eq. 2 is present at point A in Fig. 1

E

=_

L



3rd NASA Symposium on VLSI Design 1991 12.2.3

and _ contains the complement of Y_. When all Ip = 0, transistor T is enabled and _ is

passed to Y/and the circuit assumes the proper next state.

To summerize, when one Ip = 1, _ assumes the complement of the proper next state

value of Y/ as defined by Eq. 2. When all Ip = 0, _ is passed to the second stage of the

inverter and Y/assumes the value defined by Eq. 2. The new present state feeds back to the

lip networks to generate the new next state values to the first stage, dependent on which

Ip = 1. An interesting observation can be made which is common to all asynchronous

sequential circuits, but perhaps is more easily seen here. When all Ip = 0, the present

state, as determined by present state variables Yi, feed back to the lip logic. All possible

next states are generated and appear at the input of the pass transistors controlled by Ip.

The circuit has "calculated", as determined by Eq. 2, all possible next states that the

circuit could enter and is prepared to assume any and every next state as defined by the

f_p terms. The exact next state is specified by the Ip state that becomes 1.

The state assignment problem for asynchronous sequential circuits is always a sig-

nificant problem. Pulse mode flow tables are in every way asynchronous in operation.

Therefore, the designer must be concerned about state assignment issues. Assume the

present state of the circuit is Si and state S_ is the next state when input Ij becomes 1.

When all inputs are 0 prior to I_ = 1, the state variables yi define the circuit to be in state

Si. When Ij = 1, since transistor T is disabled, the next state variables Y/do not change.

changes to assume values associated with Sj as defined by Eq. 2 when Ij = 1. However,

Y/ remains unchanged as long as I i = 1. Y/ does not change to the value of Sj until Ij

returns to 0, at which time _ cannot change. Therefore, each state transition occurs in

two stages:

= z i.(f,.)
-W-

E =

when Ip = 1

when all Ip --- 0

A critical race can exist in an asynchronous sequential circuit only when the state

variables yl being fed back can affect Y/without a change in input. Since the inputs must

change before present state variable yl can affect next state variable Yj, no critical race

can occur. The following theorem has been established.

Theorem 1 Asynchronous sequential circuits implemented with the basic circuit shown in

Fig. 1 are void of critical races.

If the circuit cannot experience a critical race, then the Single Transition Time (STT)

state assignment procedures need not be followed, specifically the Tracey conditions[5] need

not be met. Moreover, since the STT conditions need not be met, any state assignment is

satisfactory as long as each state has a unique code.

The design procedure can be stated as follows:

Procedure 1 Step 1 Create an appropriate flow table.

Step 2 Provide a state assignment where each state has a unique code.



12.2.4

Yl

0 0 A

0 1 B

1 1 C

! 0 D

Y2

A

c
A

C

xc z

B 0

- 0
D 1

Table 1: Example Flow Table

Step 3 Form the state table.

Step 4 Find the nezt state equation_ in the following form"

= E Ip(f,p)

where each input passes an fir ezpresaion of state variables.

Example 1 Realize a circui t whic h has two pulse input_ X and C and a level outpu t Z.

C represents a clock that produces pulses at a regular _nterva!. Z must be I between puhtJ

Ci and ci±_ on!F if a n X pulse occurre d between c!oc k pu!ses C__I and Ui.

The reduced flow table with the state assignment is shown in Table !.

equations for this flow table are:

Y1 = X(y,)+ C(gZ(y2) + V,(_))

Y_ = X(_)+ C(_(W) + V,(_))

The design

2.1 Design By Inspection

The synchronous state assignment procedure allows for a great deal of flexibility. The one-

hot-code is well known as a state assignment that allows-one derive the ciesign equati_as

by inspecfio.n. A one-hot-code encodes an n-row flow table with n-state variables Where

state Si !S _en_c_°_de_d___v!t!_xYi = ! and a_ other y$ - 0, j # i" A predeces_s0r s ta__te Of state Si

is a state the circuit is in prior to an input change that forces the circuit into Si.

If Sj is a predecessor state to S_ under input Ip, the partial next state equatio n is

If Si_ , Si2,.., , Sj_ are predecessor states to Si, then the partial next state equation is

= I_(vj, + vj2 +... + vj,).

In general, the fir terms become simple sum-of-products where each product is an uncorn-

plernented state variable.

Design Procedure 1 can be employed by simply changing Step 2 to implementing a one-

hot-code. The equations can be ];ormed by the well known inspection method. Simplier

fly terms result. The disadvantage is that more state variables are generally needed. The

design equations for Table ! are



3rd NASA Symposium on VLSI Design 1991 12.2.5

Y1 = C(yl + Y3)

Y2= x(y,)
Y3 = C(y2 + y4)

Y4= X(yz)

Liu[6] proposed a design technique for iterative logic array synchronous sequential cir-

cuits that have the unique property where each state has predecessor states only in one

input. The next state equations have the form

Y,= I,(y,p)

where each flp is a sum-of-products with each product term consisting of a single com-

plemented or uncomplemented state variable. This technique reduces the amount of logic

further for each next state variable in that only one input rp pass gate is needed. The

potential disadvantage is that more state variables can be needed.

3 Tolerance to 1-1 Input Overlap

In the previous section there were no constraints on the width of each input pulse. (The

minimum width must be long enough to pass the signal to the output of the input inverters

at the first state). It was assumed that only one Ip would be 1. This condition can be

relaxed. For simplicity, suppose two inputs Ip and Iq are both 1. Moreover, suppose the

circuit should transition from S_ to Sp or Sq under Ip or Iq respectively. When both Ip and

lq are I,

= I,,(/,,,)+ i (f,q)

As long as Ip and Iq are 1, there can be conflicting signals at the input to the inverter

of the first stage of Fig. 1. Since, at least one input = 1, transistor T is not enabled and

yi does not change and the conflict does not affect the present state. The circuit remains

in state S_ and will remain in S_ until both Ip and Iq -- 0. If Ip(Iq) remains 1 longer than

Iq(Ip), then f_v(f_q) will be passed to specify _ and only when both inputs are 0 win the

circuit transition to Sp(Sq). Therefore, the circuit action is determined by the input that

remains 1 last.

Theorem 2 /f more than one input state is 1, then the nezt state of the circuit is deter-

mined by the input that remains 1 last.

Proof: If more than one input = 1, then _ is determined by the equation

= Ej_- 

where Ij are those inputs that are 1. Since yl changes only when all Ij are 0, the circuit

does not transition until all Ij = 0. Suppose Ip is the last input that is 1. Then the

equation for _ becomes



12.2.6

Z =

When I v transitions to 0, then Yi assumes the state determined by _ which was specified

by zp,
QED,

From Theorem 2, it is clear that the order in which inputs transition from 1 --* 0 is

important. Transitions from 0 --4 I are unimportant. Therefore, if more than one input

state is 1, it is unimportant which order the inputs transition 0 --, 1. The next state is

specified by the last input that transitions 1 ---* 0. For example, suppose there are four

input states for a circuit. If the inputs transition as shown in Fig. 2, the circuit will assume

the state specified by/3 when all the inputs are 0.

q

Figure 2: input Waveform Example

4 Level Input Circuits

The previous discussion focused on pulse mode circuits. Several researchers have intro-

duced the notion of transition sensitive asynchronous sequential circuit design [2,7]. Bre:

deson [2] converted a level input flow table to a transition sensitive (TS) flow table. A

TS flow table shows the table entries that result from a change in inputs. The essential

feature in a TS design is that inputs are represented as pulses which are created whenever

the input state transitions from 0 ---* 1. Consider the level input flow table of Table 2. The

TS representation of this flow table is shown in Table 3. Once the flow table is in the TS

form, the design procedure in Section 2 applies.

Bredeson introduced another notion in the design of TS circuits. If one begins with

primitive row flow table, then the input state variables can become the state variables.

Additional state variables are needed only to produce unique codes for the states and this

is accomplished by partitioning stable states in each column of the flow table. In Table 3,



3rd NASA Symposium on VLSI Design 1991 12.2.7

Yl y2 y3
0 0 0 A

0 1 0 B

1 0 0 C

0 0 1 D

1 1 0 E

1 1 1 F

1 0 1 G

0 1 1 H

X1 X2

00 01 11 10

A B C

A B F G

D H E C

D B E C

D B E G

A H F C

A H E G

D H F C

Table 2: Level Input Flow Table

Yl Y2 Y3

0 0 0 A

0 1 0 B

1 0 0 C

0 0 1

1 1 0

1 1 1

1 0 1

0 1 1

X1 X2

00 01 11 10

F

F

C

D C

E

F

G

H

B

H

D

A

Table 3: Transition Sensitive Flow Table



!2.2.8

Y! and y2 are assigned to z ! and z_ respectively. State variable y3 is assigned to partition

the stable states i_ each column. For example Y3 partitions states A and D in the first

column. Therefore only one state variable is needed to implement the flow table rather

than the expected three.

5 State Sequence Detection

It might be desirable to be able to detect the potential transition between a pair of states

that might be associated with a critical event. Suppose state Sk can be entered only from

state Si under fault free conditions, rf state Sk is entered _om state Sn, i # n, then an

error has occurred. In some cases, suc_h" a tFansition should not be a_owed.

The circuit presented here is capable of providing information necessary to detect the

occurrence of a transition between a pair o]_ st_.tespri0r tothe actual transition. If one

knows that an undesirable transition is about to occur, it is possible to prevent the tran-
sition and avoid an unwanted event.

State information is present at two points in the circuit of Fig. 1. The present state is

available at the output of the second stage Y/. When the next input state is 1, the next

state information is specified by Y/. To detect a sequence between a pair of states, then

the state information at Y/ and _ can be decoded.

If it was desired to permit a transition to state Sk only from state Si, then Si can

be decoded from Yi and S_ can be decoded from _. If the next state as specified by

is Sk and the present state is not Si as specified by Y/, then an error condition can be

signaled. Th;.s is depicted in Fig. 3. To prevent the circuit from assuming state Sk under

the error condition, the error signal can. be fed into the NOR gate which drives transistor

T in Fig. 1. The error signal would prevent the circuit transition to state Sk. Moreover,

since transistor T is not enabled when the error condition is detected, the circuit will not

transition to Sk and remain in Si. It might be desirable to stop all processing when the

error condition is detected. If so, the error signal can be used to disable all further input

state changes and the circuit would remain in the current state without any further state

transitions. Yi will specify the incorrect state Sj, Sj 7t Si. If one desired to know the value

of Sj, _ could be examined to reveal the error state to help with diagnostics.

6 Fault Detection

Classical fault detection of sequential faults includes using an error detection code on the

state assignment [8]. If hardware is not shared, a single error detection code is sufficient.

Since the design approach used here does not share logic, except for the NOR gate which

drives the T transistors, a single error detection code can be employed and is used in the

work presented here. It is assumed that the NOR gate is hard core for this discussion.

Moreover, it is assumed that only one device can fail at a time and that the circuit will

assume all total circuit states before a second fault can occur. In this discussion, all faults



3rd NASA Symposium on VLSI Design 1991 12.2.9

that can cause a false next state value are detectable; this includes stuck-at, stuck-open

and stuck-on faults.

The circuit presented thus far has some interesting fault detection capabilities. Most

other fault detection mechanisms for sequential circuits detect the presence of a fault after

the circuit has assumed a faulty state. This circuit is able to detect the presence of a fault

in most of the circuit before the circuit actually enters the fault state.

In this discussion, it is assume that a simple parity code is used for fault detection.

Under the single fault assumptions above, only one extra state variable needs to be added.

Let the states of the flow table be encoded with an even parity state assignment. Whenever

odd parity is assumed by the state variables, a fault condition is detectable. Let all odd

parity states (fault states) be assigned to have a next state value that is also odd parity.

Therefore, whenever an odd parity state is assumed, the next state is also an odd parity
state.

The circuit for fault detection is shown in Fig. 4. The fault detector simply detects

the presence of odd parity on the state assignment; f is assigned to equal 1 when an odd

parity state is present. The fault detector monitors the parity of _. If a fault occurs to

any of the circuitry that produces _, f will detect its presence. With a fault, f = 1, and

since f feeds into the NOR gate, the T transistor is not enabled and the fault state cannot

be assumed by Yi. In this case, the circuit does not enter the fault state. Moreover, if the

input states can be disabled, the circuit will remain in the current state.

Signal f will be driven towards a 1 value as the circuit transitions between unstable and

stable states. Signal f then would prevent the T transistor from being enabled, but this

actually helps the circuit not enter an improper state. Signal f can be used therefore to

produce a self synchronizing signal, but this is a subject beyond the scope of this paper.

If a fault occurs in the second stage after the T transistor, then an odd parity state will

be entered. The next state value as specificd by the lip terms will be odd parity also since

it is assumed that only one fault is present. If the fly terms generate odd parity, then

will also have odd parity and then f = 1 with the fault being detected.

A fault in a T transistor will have the same impact as a fault in the second stage. If

Yi assumes the correct value in spite of a faulty T, no error is detected and the circuit

operates as designed. Only when Yi assumes an incorrect value will an odd parity state be

entered and hence detected.

7 Summary

A fundamental logic circuit has been presented that will allow for efficient implementation

of pulse mode asynchronous sequential circuits. Level input flow tables can be transformed

into transition sensitive flow tables which can be directly implemented with the circuit

presented here. The resulting circuits are tolerant of 1-1 crossover conditions. The final

next state of the circuit is determined by the last input that is 1 whenever more than one

input state is 1.

The unique characteristic of state sequence detection can be achieved with this circuit.



12,2.10

It is very easy to detect the present and next state in the circuitry and to prevent next

state transitions to occur. In addition to state sequence detection, real time fault detection

can be achieved where a fault state can be detected prior to a transition to a fault state.

This fault detection capability covers a wide range of fault conditions and possible faults

in the circuit.

References

[1] K. Cameron, S. Whit_ker and J. Canaris, "ACE: Automatic Centroid Extractor for

Real Time Target Tracking", NASA Symposium on VLSI Design, pp. 8.2.i-8.2.8, Nov,
1991.

[2] J. Bredeson and P. Hullna, "Synthesis of Multiple-Input Change Asynchronous Cir-

cuits Using Transition'Sensitive Fllp-Flops", IEEE Trans. Comput., vol. C-32, no. 5,

pp. 37-44, May 1973.

[3] S. K. Gopalakrishnan and G. K. Maki, "VLSI Asynchronous Sequential Circuit De-

sign", ICCD, Sept, 1990, pp 238-242.

[4] S. Whitaker and G. Maki, "Pass-Translstor Asynchronous Sequential Circuits", IEEE

JSSC, Vol.24, No.l, Feb. 1989, pp. 71-78

[5] J. Tracey, "Inte n State Assignment for Asynchronous Sequential Machines", IEEE
Transactions on Electronic Computers, Vol. EC-15, Aug. 1966, pp. 551-560.

[6] M. Liu, K. Liu, G. Maki and S. Whitaker, "Automated iLA Design for Synchronous

Sequential Circuits", NASA Symposium on VLSI Design, Vol 3, October 1991'

[7] J. Smith and C. Roth, "Analysis and Synthesis of Asynchronous Networks Using Edge

Sensitive Flip-Flops", IEEE Trans on Computers, vol. C-20, pp. 847-855, Aug 1971.

[8] John Meyer, "Fault Tolerant Sequential Machines", IEEE Transactions on Computers,

vol. C-20, October 1971. sequential circuits. !EEE TC around 1970.



3rd NASA Symposium on VLSI Design 1991 12.2.11

ERROR
DETECT

Figure 3: State Sequence Detection Logic

f/1

f,3

T
_A

Fault f

Oo_o_orTO>

T Y_

Figure 4: Fault Detection Logic



m_

L

-..-

mE.


